
Unifying Model-based and Reactive Programming
within a Model-based Executive

Brian C. Williams and Vineet Gupta t
NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035 USA

E-mail: {williams, vgupta}@ptolemy, arc.nasa.gov

Abstract

Real-time, model-based, deduction has recently
emerged as a vital component in AI's tool box for
developing highly autonomous reactive systems. Yet
one of the current hurdles towards developing model-
based reactive systems is the number of methods simul-
taneously employed, and their corresponding melange
of programming and modeling languages. This paper
offers an important step towards unification. We in-
troduce RMPL, a rich modeling language that com-
bines probabilistic, constraint-based modeling with re-
active programming constructs, while offering a simple
semantics in terms of hidden state Markov processes.
We introduce probabilistic, hierarchical constraint au-
tomata (PHCA), which allow Markov processes to be
expressed in a compact representation that preserves
the modularity of RMPL programs. Finally, a model-
based executive, called Reactive Burton is described
that exploits this compact encoding to perform efficent
simulation, belief state update and control sequence
generation.

Introduction

Highly autonomous systems, such as NASA's Deep
Space One spacecraft(Muscettola et aI. 1999) and
Rover prototypes, are being deployed that leverage
many of the fruits of AI's work on automated reasoning
- planning and scheduling, task decomposition execu-
tion, model-based reasoning and constraint satisfaction.
Yet a likely show stopper to widely deploying this level
of autonomy is the myriad of AI modeling languages
employed, coupled to the programming and specifica-
tion languages used to implement and verify the real-
time system.

This paper concentrates on the part of this chal-
lenge that lies at the reactive layer - robotic execu-
tion, model-based monitoring and reactive program-
ruing. Key to this challenge is the development of a uni-

fied language that can express a rich set of mixed hard-
ware and software behaviors (Reactive Model-based
Programming Language - RMPL), a compact encod-
ing of the underlying Markov process (hierarchical con-
straint automata - HCA), and an executive for this en-

tCaelum Research Corporation.

coding that supports efficient state estimation, moni-

toring and control generation (Reactive Burton).
Reactive MPL achieves expressivity at both the soft-

ware and hardware levels by merging key ideas from
synchronous programming languages, qualitative mod-
eling and Markov decision processes. Synchronous pro-
gramming offers a class of languages (Halbwachs 1993)
developed for writing control programs for reactive sys-

tems (Harel & Pnueli 1985; Berry 1989) -- logical
concurrency, preemption and executable specifications.
Qualitative modeling and Markov decision processes to-

gether offer a rich language for describing continuous
process and uncertainty.

Reactive Burton achieves efficient execution through

a careful generalization of state enumeration algorithms
that are successfully employed by the Sherlock(de Kleer

Williams 1989) and Livingstone(Williams & Nayak
1996) systems on simpler modeling languages.

We start with a sketch of R. Burton, set in the con-
text of other work on robotic execution and reactive

programming. The first half of the paper then in-
troduces hierarchical constraint automata, their deter-

ministic execution, and their expression using Reactive
MPL. The direct mapping from RMPL combinators to
HCA, coupled with HCA's hierarchical representation
avoids the state explosion problem that frequently oc-
curs while compiling large reactive programs.

The second half of the paper turns to model-based ex-
ecution under uncertainty. First we generalize HCAs to
a factored representation of partially observable Markov
decision processes (POMDPs) with limited rewards.
We then develop RBurton's stochastic monitoring and
execution capabilities, while leveraging off the com-
pact encoding offered by probabilistic HCA. Finally, we
demonstrate RMPL on a simplified version of a navi-
gation maneuver performed within the Remote Agent
Autonomous Spacecraft Experiment. The paper con-
cludes with an additional discussion of related work.

The Reactive Burton Executive

The robotic execution task consists of controlling a
physical plant according to a stream of high-level com-
mands (goals), in the face of unexpected behavior from
the system. To accomplish this the executive controls

somevariablesof the plant,andsensesthevaluesof
somesensorstodeterminethehiddenstateoftheplant.

A schematicofReactiveBurtonisshownbelow.The
physicaltestbedsbeingusedto demonstrateaspectsof
RBurton'scapabilitiesincludea deepspaceprobeen-
routeto anasteroid,aRussianrover,adeepspaceinter-
ferometer,anda chemicalplantthatgeneratesrocket
fuelfromtheatmosphere.

RBurtonExecutlve_ _x_rnal

State t I _ °ntrOl I

t Observables 1Controls

[Plant I
R. Burton consists of two main components. The

state estimation module determines the current most

likely states of the plant from observed behavior us-
ing a plant model. This generalizes mode identification
(MI), (Williams & Nayak 1996). The key difference is
the expressiveness of the modeling languages employed.
Reactive MPL allows a rich set of embedded software

behaviors to be modeled, hence RBurton's state esti-
mator offers a powerful tool for monitoring mixed soft-

ware/hardware systems.
RBurton's control sequencer executes a program for

controlling the plant that is also specified using RMPL.
Actions are conditioned on external goals and proper-
ties of the plant's current most likely state. Given mul-
tiple feasible options, RBurton selects the course of ac-
tion that maximizes immediate reward. As a control

language RMPL offers the expressiveness of reactive
languages like Esterel(Berry & Gonthier 1992), along
with many of the goal-directed task decomposition and
monitoring capabilities supported by robotic execution
languages like RAPS(Firby 1995), TCA(Simmons 1994)
and ESL(Gat 1996).

What is particularly key is the fact that the plant
model used for reasoning and the control program used
for execution are written in the same language.

Hierarchic Constraint Automata

RMPL programs may be viewed as specifications of
POMDPs, that is probabilistic automata with partial
observability and rewards. While POMDPs offer a nat-
ural way of thinking about reactive systems, as a direct

encoding they are notoriously intractable. To develop
an expressive, yet compact encoding we introduce five
key attributes. First, transitions are probabilistic, with
associated costs. Second, the POMDP is factored into
a set of concurrently operating automata. Third, each
state is labeled with a constraint that holds whenever

the automaton marks that state. This allows an ef-
ficient, intentional encoding of co-temporal processes,

such as fluid flows. Fourth, automata are arranged in a
hierarchy - the state of an automaton may itself be an
automaton, which is invoked when marked by its par-
ent. This enables the initiation and termination of more

complex concurrent and sequential behaviors. Finally,
each transition may have multiple targets, allowing an
automaton to be in several states simultaneously, This
enables a compact representation for recursive behav-
iors like "always" and "do until".

These attributes are a synthesis of representations
from several areas of computation. The first attribute
comes from the area of Markov processes, and is essen-
tial for tasks like stochastic control or failure analysis
and repair. The second and third attributes are preva-
lent in areas like digital systems and qualitative mod-
eling. The fourth and fifth are prevalent in the field of
synchronous programming, and form the basis for re-

active languages like Esterel(Berry & Gonthier 1992),
Lustre(Halbwachs, Caspi, & Pilaud 1991), Signal(Guer-
nicet al. 1991) and State Charts(Harel 1987). Together
they allow complex systems to be modeled that involve
software, digital hardware and continuous processes.

Hierarchic constraint automata (HCA) incorporate
each of these attributes. An HCA models physical pro-
cesses with changing interactions by enabling and dis-
abling constraints within a constraint store (e.g., a valve
opening causes fuel to flow to an engine). Transitions
between successive states are then conditioned on con-

straints entailed by that store (e.g., the presence or ab-
sence of acceleration).

A constraint system (D, _) is a set of tokens D,
closed under conjunction, together with an entailment
relation __C D × D. The relation _ satisfies the stan-
dard rules for conjunction. *

R. Burton, uses propositional state logic as its con-
straint system. In state logic each proposition is an as-

signment xi = vii, where variable xi ranges over a finite
domain ©(x_). Propositions are composed into formula
using the standard logical connectives - and (A), or (V)
and not (-_). If a variable can take on multiple values,

then x_ = vii is replaced with vij E x_.
A deterministic, hierarchical, constraint automaton

S is specified as a tuple (E, O, H, Cp, Tp/, where:

• E is a set of states, partitioned into primitive states

Ep and composite states Ec. Each composite state
denotes a hierarchical, constraint automaton.

• 0 C E is a set of start states.

• H is a set of variables with each xi E II ranging over a
finite domain Z)[xi]. C[H] denotes the set of all finite
domain constraints over H.

• Cp : EB -_ C[II], associates with each primitive state
si a finite domain constraint Cp(s_) that holds when-
ever s_ is marked.

• The standard rules for conjunction are 1) a _ a (iden-
tity); 2) a A b _ a and a A b _ b (A elimination); 3) a _ b
and bAc _ d impliesaAc _ d (cut); and 4) a _ b and
a _ c implies a _ b A c (A introduction).

• 7"p:Ep× C[1-I] --_ 2E associates with each primitive

state si a transition function Tp(si). Each Tp(si) :

C[H] --+ 2E specifies a set of states to be marked at

time t ÷ I, given assignments to FI at time t.

Simulating Deterministic HCA

First some preliminaries. Given automaton A, gp(A)
denotes a function that returns the relevant constraints

that are associated with any primitive state contained
in A or one of its descendants. Formally, Cp(A) =

Cp [.J UB6_. _p(B). Similarly, Tp(A) returns the rel-
evant transition function associated with any of these

primitive states -- Tp(A) = Tp U (-JB_Eo Tp(B).
A full marking of an automaton is a subset of states

of an automaton, together with the start states of

any composite states in the marking. This is com-
puted recursively from an initial set of states M using
JVIF(M) = M U U{.AdF(O(S)) iS E M, s composite}.

Given a current marking M on an automaton ,4, the
function Step(A,M) computes a new marking corre-
sponding to the automaton transitioning one time step.

Step(A, M)::
1. M1 := {s 6 M Is primitive}

2. c :=
3. M2 := [-JseM1 Tp(s, C)
4. return MF(M2)

Step 1 throws away any composite marked states,
they are uninteresting as they lack associated con-
straints or transitions. Step 2 computes the conjunction
of the constraints implied by all the primitive states in

M. Step 3 computes for each primitive state the set
of states it transitions to after one time step. In step
4, applying :k4F to the union of these states marks the
start states of any composite state. The result is the
full marking for the next time step.

A trajectory of an automaton A is a finite or infi-

nite sequence of markings mo,ml,..., such that mo
is the initial marking, and for each i > 0, mi+l =
Step(A, mi). The initial marking is MF_O).

Elaborating on step 3, we represent the transition
function for each primitive state 7-p(s) as a set of pairs
(/i, si), where si 6 E, and li is a set of labels of the form

c or _ c, for some c 6 C[II]. This is the traditional
representation of transitions, as a labeled arc in a graph.
If the automaton is in state s, then at the next instant
it will go to all states si whose label li is entailed by
constraints C that are associated with currently marked
primitive states, as computed in the second step of the
algorithm, li is said to be entailed by C, written C _ li,
if V _ c 6 li.C _ c, and for each _= c E Ii.C _ c. It
is straightforward to translate this representation into
our formal representation: 7-p(s, C) = {si I C _ li}.

Two properties of these transitions are distinctive:
Transitions are conditional on what can be deduced,

not just what is explicitly assigned, and transitions are
enabled based on lack of information.

Step provides a deterministic simulator for the plant,
when applied to an HCA that specifies a plant model.

Alternatively Step provides a deterministic version of
the control sequencer for RBurton, by placing appro-
priate restrictions on the control HCA. Constraints at-
tached to primitive states on this HCA are restricted
to control assignments, while transition labels are con-
ditioned on the external goals and the estimated cur-
rent state. The set of active constraints collected from

marked states during step 2 of the algorithm is then the
set of control actions to be output to the plant.

A Simple Example

We illustrate HCA with a simple automaton, c rep-
resents a constraint, start states of an automaton are
marked with arrows, ar/d all transitions are labeled. For
convenience we use c to denote the label _ c, and _ to
denote the label _- c. Circles represent primitive states,
while rectangles represent composite states.

J
The automaton has two start states, both of which

are composite. Every transition is labeled _ d, hence
all transitions are disabled and the automaton is pre-
empted whenever d becomes true. The first state has
one primitive state, which asserts the constraint c. If
d does not hold, then it goes back to itself -- thus it
repeatedly asserts c until d becomes true. The second
automaton has a primitive start state. Once again, at
anytime if d becomes true, the entire automaton will
immediately terminate. Otherwise it waits until a be-
comes true, and then goes to its second state, which is
composite. This automaton has one start state, which
it repeats at every time instant until d holds. In ad-
dition, it starts another automaton, which checks if e
holds, and if true generates b in the next state. Thus,
the behavior of the overall automaton is as follows: it

starts asserting c at every time instant. If a becomes
true, then at every instant thereafter it checks if e is
true, and asserts b in the succeeding instant. Through-
out it watches for d to become true, and if so halts. An

RMPL program that produces an equivalent automaton
is:

do

(always c,
when a donext always if e thennext b)

watching d

Reactive MPL: Primitive Combinators

We now present the syntax for the reactive model-based

programming language. Our preferred approach is to
introduce a minimum set of primitives, used to con-
struct programs -- each primitive that we add to the

languageisdrivenbyadesiredfeature.Wethendefine
ontopof theseprimitivesa varietyofprogramcombi-
nators,suchasthoseusedin thesimpleexample,that
makethelanguageusable,Theprimitivesaredrivenby
theneedto writereactivecontrolsoftwarein thelan-
guage,aswellasto modelphysicalsystems.Towrite
reactivecontrolprogramswerequirecombinatorsfor
preemption,conditionalbranchinganditeration.For
modelinghardware,werequireconstructsforrepresent-
ingco-temporalinteractionsanduncertaineffects.Fi-
nallyweneedlogicalconcurrencyto beabletocompose
models and programs together.

As we introduce each primitive we show how to con-
struct its corresponding automata. In these definitions
lower case letters, like c, denote constraints, while upper
case letters, like A and B, denote automata. The term

"theory" refers to the set of all constraints associated
with marked primitive states at some time point.

c. This program asserts that constraint c is true at
the initial instant of time. This construct is used to

represent co-temporal interactions, such as a qualita-
tive constraint between fluid flow and pressure. The
automaton for it is:

if c thennext A. This program starts behaving like
A in the next instant if the current theory entails c.
This is the basic conditional branch construct. Given

the automaton for A, we construct an automaton for

ifc thennext A by adding a new start state, and going
from this state to A if c is entailed.

if c thennext A

unless c thennext A. This program executes A in
the next instant if the current theory does not entail
c. The automaton for this is similar to the automa-
ton for if c thennext A. This is the basic construct

for building preemption constructs -- it is the only one
that introduces conditions _ c. This introduces non-
monotonicity, however since these non-monotonic con-
ditions hold only in the next instant, the logic is strati-
fied and monotonic in each state. This avoids the kinds

of causal paradoxes possible in languages like Esterel.

unless c thennext A

We also allow generalized sequences for if ... then
and unless ... then, terminated with thennext.

A,B. This is the parallel composition of two au-

tomata, and is the basic construct for introducing con-
currency. The composite automaton has two start
states, given by the two automata for A and B.

A,B

always A. This program starts a new copy of A at
each instant of time -- this is the only iteration con-

struct needed. The automaton is produced by marking
A as a start state and by introducing an additional new
start state. This state has the responsibility of initiat-
ing A during every time step after the first. A tran-
sition back to itself ensures that this state is always
marked. A second transition to A puts a new mark on
the start state of A at every next step, each time invok-

ing a virtual copy of A. The ability of an automaton
to have multiple states marked simultaneously is key
to this novel encoding, which avoids requiring explicit
copies of A.

always A

Adding Uncertainty to RMPL

The presentation has concentrated thus far on an ex-

pressive language and an algorithm for deterministi-
cally executing hierarchical constraint automata. This

can be used to simulate the plant or to generate deter-
ministic plant control sequences. Uncertainty requires
closing the controller's loop. The plant's observables
are used to predict its internal state, and to determine
when it deviates from the intended effect. Uncertain

effects are modeled by introducing transition proba-
bilities, turning the plant into a partially observable
Markov process. The efficient estimation of these pro-
cesses for complex systems is notoriously difficult.

An efficient estimate of the plant's possible states (its
belief state) is enabled through the compact encoding of
the plant's model in terms of hierarchical constraint au-

tomata. This estimate is used to guide the evaluation of
the control program at each time tick. To express prob-
abilistic knowledge into Reactive MPL we introduce the
probabilistic combinator choose :

choose [A with p,B with q]. This combinator re-
duces to A with probability p, to B with probability q,

and so on. In order to ensure that the current theory
does not depend upon the probabilistic choices made

in thecurrentstate,wemakethefollowingrestriction
-- all assertionsofconstraintsin A and B must be in

the scope of a next. This restriction ensures that no
constraints are associated with the start states of A and

B (technically the attached constraint is "true"), and
thus the probabilities are associated only with transi-
tions. The corresponding automaton is encoded with a
single probabilistic start transition, which allows us to
choose between A and B.

choose [A with p, B with q]

B

To incorporate probabitistic transitions into HCA we
change the definition of Tp. Recall for deterministic
HCA that Tp(s_) denotes a single transition function.
For probabilistic HCA Tp(si) denotes a distribution

over transition functions TpJ(si), whose probabilities

P(TpJ(si)) sum to 1.

Tp(si) is encoded as a probabilistic, AND-OR
tree. This supports a simple transformation of nested
choose combinators to probabilistic HCA. Each leaf
of this tree is labeled with a set of one or more target
states in E, which the automaton transitions to in the
next time tick.

The branches ai --+ b_j of a probabilistic OR node
ai represent a distribution over a disjoint set of alter-
natives, and are labeled with conditional probabilities

P[bii I ai]. The probability of branches emanating from
each a, sum to unity.

The branches of a deterministic AND node represent
an inclusive set of choices. Each branch is labeled by a
set of conditions lij of the form _ ¢ or _= ¢, where ¢ is
any formula in propositional state logic over variables
II. Every branch is taken whose conditions are satisfied

by the current state (i.e., P[bij [ai,lii] = 1).

A CB C A D B D

Each AND-OR tree is compiled into a two level tree
(shown above), with the root node being a probabilistic
OR, and its children being deterministic ANDs. Compi-

lation is performed using distributivity, as shown below,
and commutativity. This allows adjacent AND nodes
to be merged, by taking conjunctions of labels, and ad-

jacent OR nodes to be merged, by taking products of
probabilities.

This two level tree is a direct encoding of Tp(si).
Each AND node represents one of the transition func-

tions "]-pJ(si), while the probability on the OR branch,

terminating on this AND node, denotes P(TpJ(si)).

RBurton: State Estimation

To implement belief state update recall that a prob-
abilistic HCA encodes a POMDP. A POMDP can be

described as a tuple (E,/t4, 60, PT, PO, T_). E, .M and
O denote finite sets of feasible states si, control actions
#i, and observations oi. The state transition function,

PT[si(t),pi(t) _ si (t+l)] denotes the probability that
si (t+l) is the next state, given current state s, (t) and

control action #i (t) at time t. The observation func-

tion, P(.9[si (t) _-+oi (t)] denotes the probability that oi (t)

is observed, given state s_ (t) at time t. The rewardfune-
tion :R(si (t)) specifies the immediate reward for taking

each control action given state si (t) at time t.
RBurton incrementally updates the plant belief state,

conditioned on each control action sent and each obser-

vation received, respectively:

.tOo) .(:)]O'('t+l)[si] _ P[si(t+l) I vvo ,...,,.,v, , ...

a(t+l.)[si] _ p[s_/_+l) l_(o) (t+l) (0),...,
Exploiting the Markov property, the belief state at time
t + 1 is computed from the belief state and control ac-
tions at time t and observations at t + 1 using the stan-
dard equations:

a('t+')[si] = _ a(t')[sj]PT[S,,#i _-_ sj]

j=l

Po[si _ ok]

a(t+")[s/] = a('t+')[s']E_=, a('t+')[sJ]Po[sJ _ o_]

To calculate PT recall that a transition T is com-
posed of a set of primitive transitions, one for each
marked primitive state. Assuming conditional inde-
pendence of primitive transition probabilities, given the
current marking, the combined probability of each set
is the product of the primitive transition probabilities
of the set. This is analogous to the various indepen-
dence of failure assumptions exploited by systems like

GDE(de Kleer & Williams 1987), Sherlock(de Kleer
& Williams 1989) and Livingstone(Williams & Nayak
1996). However unlike these earlier systems, multiple
sets of transitions may go to the same target mark-

ing. This is a consequence of the fact that in an HCA
primitive states have multiple next states. Hence the
transition probabilities for all transitions going to the

same target must be summed according to the above
equation for cr(.t+l)[si].

Given PT' the belief update algorithm for a (.t+l)[si]
is a modified version of the Step algorithm presented
earlier. This new version of Step returns a set of mark-

ings, each with its own probability. Step 3a builds the
sets of possible primitive transitions. Step 3b computes
the combined next state marking and transition prob-

ability of each set. Step 3c sums the probability of all
composite transitions with the same target:

Stepp(A,M)::
1. M1 := {s E M ls primitive}

2. c :=
3a. M2a := I-[,_M1 Tp(s,C)
3b. M2b := {(:V[F(Ui=I Si),17Ii=1pi)

[((SI,pl),..., (Smpn)} E M2a}

3c. M2 := {(S, _(S,p)eM2bP) [(S,_) E M2b}
4. return M2

The best first enumeration algorithms developed for
Sherlock and Livingstone, are directly used by RBurton

to generate the composite transitions in step 3a and b
in order from most to least likely. However, since the

correspondence between transitions and next states is
many to one, there is no guarantee that the belief states
are enumerated in decreasing order.

Instead we assume that most of the probability den-

sity resides in the few leading candidate transition sets.
Hence a best first enumeration of the few leading tran-
sition sets will quickly lead to a reasonable approxima-
tion. We enumerate transitions in decreasing order until
most of the probability density space is covered (e.g.,
95%), and then perform step 3c to merge the results.

Computing _rft÷l*)[si] requires Po[si (t) _-_oi(t)].
PO is computed using the standard approach in model-
based reasoning, first introduced within the GDE sys-
tem. For each variable assignment in each new obser-
vation, RBurton uses the model, current state and pre-
vious observation to predict or refute this assignment,

giving it probability 1 or 0 respectively. If no predic-
tion is made, then a prior distribution on observables is

assumed (e.g., 1/n for n possible values).

RBurton: Greedy Sequencing

A full decision theoretic executive that maximizes ex-

pected reward using HCA is well beyond the scope of
this paper. However, RBurton makes the simplest use
of immediate reward and belief state, resulting in a sim-

ple form of task decomposition execution. In particu-
lar, RBurton maximizes immediate reward under the
assumption that the most likely estimated state is cor-
rect. We further assume that rewards are additive. The

hierarchical automaton provides a way of structuring
tasks, subtasks and solution methods.

Recall that the asserted constraints c of a control

program are restricted to plant control assignments. In
addition, to support selection of methods for tasks, we
replace the probabilistic combinator choose with an
analogous combinator based on reward:

choosereward [A with p,B with q]. This combi-
nator reduces to A with reward p, to B with reward q,
and so on. choosereward has restrictions analogous
to choose that associate rewards only to expressions

containing next .
The AND-OR Tree formed by nested applications of

choosereward is analogous to choose . The tree is
reduced in a similar manner, except that rewards are

added while probabilities are multiplied.

Control sequence generation again uses a variation of
Step. For step 3 of this algorithm a best first enumer-
ation algorithm is given the sets of enabled transitions
from each primitive state that is marked in the most
likely current marking. During the enumeration it must
rule out any sets of transitions that lead to an incon-
sistent (conflicting) control assignment. It then returns
the set of transitions that maximize combined reward.

This is analogous in RAPS(Firby 1995) to selecting ap-
plicable methods based on priority numbers.

Extending RMPL: Definable operators

Given the basic operators defined earlier, we can define

a variety of common language constructs, making the
task of programming in reactive MPL considerably eas-
ier. Common constructs in RMPL include recursion,
conditional execution, next, sequencing and iteration.
In this section we concentrate on those constructs nec-

essary to support the DS1 navigation example.

Recursion and procedure definitions. Given a
declaration P :: A[P], where A may contain oc-
currences of procedure name P, we replace it by
always ifp then AlP�P]. At each time tick this looks
to see if p is asserted (corresponding to p being in-
voked), and if so starts A.

next A. This is simply if true thennext A. We
can also define if c thennext A elsenext B as

if c thennext A, unless c thennext B.

if c then A. This construct has the effect of start-

ing A at the time instant in which c becomes true. It
can be defined in terms of the other combinators as fol-

lows, where the expression to the left of the equality is
replaced with the expression on the right:

ifc then d = c--+ d
if c then if d thennext A = if c A d thennext A

if c then always A =

if c then A, if c thennext always A
if c then (A, B) =

if c then A, if c then B
if c then choose [A with p, B with q] =

choose [if c then A with p, if c then B with ql

A; B. This does sequential composition of A and B.
It keeps doing A until A is finished. Then it starts B.
It can be written in terms of the other constructs by
detecting the termination of A by a proposition, and
using that to trigger B. RMPL detects the termina-
tion of A by a case analysis of the structure of A (see
(Fromherz, Gupta, & Saraswat 1997) for details).

do A watching c. This is a weak preemption oper-
ator. It executes A, but if c becomes true in any time
instant, it terminates execution of ,4 in the next instant.

Theautomatonfor this isderivedfromtheautomaton
forA by adding the label _ c on all transitions in A.

suspend A on c reactivate on d. This is like the
"Control - Z, fg" pair of Unix -- it suspends the pro-
cess when c becomes true, and restarts it from the same
point when d becomes true.

when c donext A. This starts A at the instant after

the first one in which c becomes true. It is a temporally
extended version of if c thennext A.

when c do A. This temporally extends if c then A.
Its automaton is similar to the automaton for

if c then A, except for the fact that there is a tran-
sition from the start state to itself labeled _ c.

DS1 Optical Navigation Example

To make RMPL's capability concrete we model the au-
tonavigation system of the spacecraft Deep Space 1.
This system is used on the spacecraft once a week to
do small course corrections. It works by talcing pictures
of three asteroids, and by using the difference between

their actual locations from their projected locations to
determine the course error. This is then used by an-
other system to determine a new course. The following
is a greatly simplified version of tile program. MICAS
is a hardware model for the miniaturized camera, Au-
toNav is the top-level control program, and TakePicture

and SnapStore are subroutines, the second including a
repair procedure.

AutoNav 0 :: {
TurnMicasOn,
if IPSon thennext SwitchIPSStandBy,
do

when IPSstandby A MICASon donext {
TakePicture(1);
TakePicture(2);
TakePicture(3);
{

TurnMicasOff,
OpticalNavigation0

}
} watching PictureError V OpticalNavError,
when OpticalNavError donext AutoNav(),
when PictureError donext AutoNavFailed

}

TakePicture(n) :: {
do {

TurnToTarget(n),
when Turndone do SnapStore(0)

} watching PictureError
}

SaapStore(n) ::{
if (n=3) then PictureError,
next {

MICAStakePicture;
if MICASfail then

do loop next
{MICASreset; TurnMicasOn; MICAStakePicture}

watching MICASdone,
when MICASdone do {

StorePicture,
do {

when CorruptPicture donext SnapStore(n+l)
} watching PictureError V StoreOk

}

MICAS :: always (
choose {

{
if MICASon then {

if TurnMicasOff thennext MICASoff
elsenext MICASon,
if MICAStakePicture thennext MICASdone

},
if MICASoff then

if TurnMicasOn thennext MICASon

elsenext MICASoff,
if MICASfail then

if MicasReset thennext MICASoff
elsenext MICASfail

} with 0.99,
next MICASfail with 0.01

}

Discussion and Related Work

The RMPL compiler is written in C, and generates hi-

erarchical constraint automata as its target. This sup-
ports all primitive combinators and a variety of defined
combinators. RBurton is written in Lisp, and builds
upon the best-first enumeration code at the heart of
the Livingstone system. The optical navigation sce-
nario and other simple but expressive examples have
been encoded. In addition the language is sufficiently
expressive and compact to support the full DS1 space-
craft models developed for Livingstone. RBurton's be-

havior is equivalent to Livingstone for those examples.
Current working includes modeling for a Mars rover and
JPL's Space Interferometer Mission.

Turning to related work, Reactive MPL synthe-
sizes ideas underlying constraint-based modeling, syn-
chronous programming languages and POMDPs. Syn-
chronous programming languages (Halbwachs 1993;
Berry & Gonthier 1992; Halbwachs, Caspi, & Pilaud
1991; Guernic et al. 1991; Harel 1987; Saraswat, Ja-
gadeesan, & Gupta 1996) were developed for writing
control code for reactive systems. They are based on
the Perfect Synchrony Hypothesis -- a program reacts
instantaneously to its inputs. Synchronous program-
ming languages exhibit logical concurrency, orthogonal
preemption, multiform time and determinacy, which
Berry has convincingly argued are necessary character-
istics for reactive programming. Reactive MPL is a
synchronous language, and satisfies all these character-
istics.

In addition,ReactiveMPLis distinguishedbythe
adoptionof MDPsasits underlyingmodel,its treat-
mentof partialobservabilityandits extensiveuseof
contraint modeling to observe hidden state. This pro-
vides a rich language for continuous process, failure,
uncertainty and repair.

In the Esterel work, Berry emphasizes executable
specifications -- "What you prove is what you execute"
-- this is to eliminate the gap between the specifications
about which we prove properties, and the programs that
are supposed to implement them. We carry this one

step further, by doing our reasoning on executable pro-
grams directly, in real time.

As previously discussed, RMPL and RBurton over-
lap substantially with AI robotic execution languages
RAPS, ESL and TCA. For example, method selection,
monitoring, preemption and concurrent execution are
core elements of these languages, shared with RMPL.

One key difference is that RMPL's constructs fully

cover synchronous programing, hence moving towards
a unification of the executive with the underlying

real-time language. In addition RBurton's deduc-
tive monitoring capability handles a rich set of soft-
ware/hardware models that go well beyond those han-
dled by systems like Livingstone. This moves execution
languages towards a unification with model-based, de-
ductive monitoring.

Finally, note that hierarchical state diagrams, like
State Charts(Harel 1987), are becoming common tools
for system engineers to write real-time specifications.

These specifications are naturally expressed within
RMPL, due to RMPL's simple correspondence with hi-
erarchical constraint automata, which are closely re-
lated to state charts. Together this offers a four way
unification between synchronous programming, robotic
execution, model-based autonomy and real-time speci-
fication, - a significant step towards our original goal.

Nevertheless substantial work remains. Many execu-
tion and control capabilities key to highly autonomous
systems fall well outside the scope of RMPL and RBur-
ton. For example, RMPL has no construct for express-
ing metric time. Hence RBurton cannot execute or
monitor temporal plans without the aid of an executive
like RAPS or Remote Agent's Exec. In addition, out-
side of monitoring, RBurton does not employ any de-
duction or planning during control sequence generation.
Unifying the kinds of sequence generation capabilties
that are the hallmark of systems like HSTS(Muscettola
1994) and Burton(Williams & Nayak 1997), requires

significant research.

References

Benveniste, A., and Berry, G., eds. 1991. Another
Look at Real-time Systems, volume 79:9.

Berry, G., and Gonthier, G. 1992. The ESTEREL pro-
gramming language: Design, semantics and implemen-
tation. Science o] Computer Programming 19(2):87 -
152.

Berry, G. 1989. Real-time programming: General
purpose or special-purpose languages. In Ritter, G.,
ed., Information Processing 89, 11 - 17. Elsevier.

de Kleer, J., and Williams, B. C. 1987. Diagnosing
multiple faults. Artificial Intelligence 32(1):97-130.

de Kleer, J., and Williams, B. C. 1989. Diagnosis
with behavioral modes. In Proceedings of IJCAI-89,
1324-1330.

Firby, R. J. 1995. The RAP language manual. Ani-
mate Agent Project Working Note AAP-6, University
of Chicago.

Fromherz, M.; Gupta, V.; and Saraswat, V. 1997. cc -

A generic framework for domain specific languges. In
POPL Workshop on Domain Specific Languages.

Gat, E. 1996. Esh A language for supporting ro-
bust plan execution in embedded autonomous agents.
In Proceedings of the 1996 AAA[Fall Symposium on
Plan Execution.

Guernic, P. L.; Borgne, M. L.; Gauthier, T.; and
Maire, C. L. 1991. Programming real time applica-
tions with SIGNAL. In Proceedings of the IEEE (1991)
1321-1336.

Halbwachs, N.; Caspi, P.; and Pilaud, D. 1991. The

synchronous programming language LUSTRE. In Pro-
ceedings of the IEEE (1991) 1305-1320.

Halbwachs, N. 1993. Synchronous programming of
reactive systems. Series in Engineering and Computer
Science. Kluwer Academic.

Harel, D., and Pnueli, A. 1985. Logics and Models
of Concurrent Systems, volume 13. NATO Advanced
Study Institute. chapter On the development of reac-
tive systems, 471-498.

Harel, D. 1987. Statecharts: A visual approach to
complex systems. Science of Computer Programming
8:231 - 274.

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams,

B.C. 1999. The new millennium remote agent: To
boldly go where no ai system has gone before. Artificial
Intelligence 100.

Muscettola, N. 1994. HSTS: Integrating planning and
scheduling. In Fox, M., and Zweben, M., eds., Intelli-

gent Scheduling. Morgan Kaufmann.

Saraswat, V. A.; Jagadeesan, R.; and Gupta, V. 1996.
Timed Default Concurrent Constraint Programming.
J of Symbolic Computation 22(5-6):475-520.

Simmons, R. 1994. Structured control for autonomous
robots. IEEE Transactions on Robotics and Automa-

tion 10(1).

Williams, B. C., and Nayak, P. P. 1996. A model-
based approach to reactive self-configuring systems.
In Proceedings of AAAI-96, 971-978.

Williams, B. C., and Nayak, P. P. 1997. A reactive
planner for a model-based executive. In Proceedings of
IJCAI-97.

